МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой <u>информационных систем</u>

наименование кафедры, отвечающей за реализацию дисциплины

(Борисов Д.Н.)

подпись, расшифровка подписи 05.05.2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ <u>Б1.В.ДВ.02.02</u> Интеллектуальные системы в технологиях интернета вещей

Код и наименование дисциплины в соответствии с учебным планом

1. Код и наименование направления подготовки/специальности:

09.04.02 Информационные системы и технологии

- **2.** Профиль подготовки/специализация: Программные технологии в инфокоммуникационных системах
- 3. Квалификация выпускника: Магистр
- 4. Форма обучения: заочная
- 5. Кафедра, отвечающая за реализацию дисциплины: <u>Информационных систем</u>
- **6. Составители программы:** *Максимов А.В. Без степени без звания* (ФИО, ученая степень, ученое звание)

1.7. Рекомендована: <u>НМС факультета компьютерных наук, протокол № 7 от</u> 05.05.2025 г.

(наименование рекомендующей структуры, дата, номер протокола,

отметки о продлении вносятся вручную)

8. Учебный год: 2025/2026 Триместр: 3

9. Цели и задачи учебной дисциплины

Целью освоения учебной дисциплины является: изучение принципов работы и архитектуры интернета вещей (IoT), включая сенсоры, устройства, сети передачи данных и облачные платформы. Освоение методов и алгоритмов для разработки интеллектуальных систем, использующих облачные вычисления, облачные сервисы и инфраструктуру для обработки данных, собранных с устройств IoT, а также для принятия решений на основе анализа этих данных с использованием облачных технологий, таких как SaaS, PaaS и IaaS.

Задачи учебной дисциплины: Ознакомление с основными концепциями и архитектурой интернета вещей (IoT), изучение принципов работы сенсоров, устройств и сетевых технологий, а также облачных платформ и сервисов, используемых для хранения и обработки данных. Освоение методов машинного обучения и искусственного интеллекта для анализа данных, получаемых от IoT-устройств, с использованием облачных вычислений и аналитических решений. Разработка алгоритмов для анализа и интерпретации данных, создание масштабируемых архитектур интеллектуальных систем, интегрирующих IoT-устройства, облачные сервисы и аналитические компоненты для обеспечения эффективной работы и принятия решений.

10. Место учебной дисциплины в структуре ООП: Дисциплина относится к обязательным профессиональным модулям, часть, формируемая участниками образовательных отношений блока 1. Дисциплина по выбору.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код и название компетенции	Код и название индикатора компетенции	Знания, умения, навыки
ПК-3 Способен проектировать структуру программ и реализует алгоритмы с учётом требований к надёжности, модульности и масштабируемости	ПК-3.1 Разрабатывает технические спецификации, определяет структуру взаимодействия программных компонентов	Знать: Основные концепции, архитектуры и облачные модели интернета вещей (IoT) Принципы работы сенсоров, устройств IoT и сетевых технологий, включая протоколы связи (например, MQTT, CoAP) Основы облачных платформ и сервисов для IoT (AWS IoT, Azure IoT Hub, Google Cloud IoT) Современные тренды, инновации и направления развития в области IoT и облачных технологий. Уметь: Разрабатывать алгоритмы обработки данных IoT с использованием облачных вычислений и аналитических платформ. Проектировать масштабируемые интеллектуальные системы с интеграцией облачных сервисов. Создавать прототипы IoT-решений с применением облачных инфраструктур. Анализировать данные, полученные от IoT-устройств, с помощью аналитических инструментов и машинного обучения в облаке. Применять аналитические инструменты для извлечения ценной информации из больших данных. Владеть: Инструментами разработки IoT устройств и прототипирования (Arduino, Raspberry Pi) с интеграцией с облачными платформами.

		Платформами для анализа данных и машинного обучения (Python, R, TensorFlow) в облаке. Навыками работы с облачными сервисами (AWS, Azure, Google Cloud) для хранения, обработки и визуализации данных. Знаниями основ информационной безопасности в контексте IoT и облачных решений.
ПК-6	ПК-6.2	Знать:
Способен	Обеспечивает	Методы интеграции различных технологий, включая облачные
разрабатывать и сопровождать структуры информационно-коммуникационной системы	работу технических и программных средств информационно- коммуникационных систем	платформы, IoT-устройства и веб-технологии Паттерны проектирования программных систем и их реализацию в облачных средах (например, микросервисы, серверлессархитектуры) Особенности асинхронного программирования и обработки событий в распределённых системах с использованием облачных технологий Этические аспекты использования облачных и IoT-технологий, вопросы конфиденциальности и безопасности данных уметь: Реализовывать алгоритмы обработки данных в контексте вебприложений с использованием облачных сервисов Оценивать этические последствия внедрения IoT-решений и разрабатывать соответствующие рекомендации Интегрировать различные компоненты системы IoT с облачными платформами и веб-интерфейсами Оптимизировать код для эффективной работы в облачных средах с учётом масштабируемости и затрат Владеть: Навыками разработки API и протоколов для интеграции Навыком разрабатывать этические рекомендации для проектов.

12. Объем дисциплины в зачетных единицах/час. — 3/108.

Форма промежуточной аттестации зачет.

13. Трудоемкость по видам учебной работы

Вид уч	ебной работы		Трудоемкость		
		Всего	Триместр		
			3		
Аудиторные занят	пя	8	8		
в том числе:	лекции	4	4		
	практические	2	2		
	лабораторные	2	2		
Самостоятельная	Самостоятельная работа		58		
Курсовая работа	a				
Промежуточная аттестация		4	4		
Часы на контроль		4	4		
Всего		72	72		

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК *
		1. Лекции	
1.1	IoT с акцентом на облачные технологии и интеллектуальные системы	Значение IoT для автоматизации и умных систем Основные компоненты IoT: устройства, сети, облако Архитектура облачных решений для IoT Преимущества использования облака: масштабируемость, доступность, аналитика Примеры интеллектуальных систем: предиктивное обслуживание, автоматическое управление, распознавание событий	https://edu.vsu .ru/course/vie w.php?id=317 90
1.2	Устройства и интеллектуальные компоненты в IoT	Классификация сенсоров (температуры, Основные типы устройств в IoT: сенсоры, исполнительные механизмы, шлюзы, контроллеры. Виды сенсоров: температуры, влажности, давления, движения, освещенности, газа и др Технические характеристики и выбор сенсора под задачу. Интеграция сенсоров с микроконтроллерами.	
1.3	Протоколы связи и интеграция с облачными платформами для формирования интеллектуальных систем	-	https://edu.vsu .ru/course/vie w.php?id=317 90
1.4	Искусственный интеллект	-	

		T	1
	для развития интеллектуальных систем IoT		
1.5	управление данными в рамках интеллектуальных систем с использованием облачных решений	-	https://edu.vsu .ru/course/vie w.php?id=317 90
1.6	Архитектура и проектирование интеллектуальных систем: компоненты, модули и алгоритмы взаимодействия	-	https://edu.vsu .ru/course/vie w.php?id=317 90
1.7	Анализ данных, автоматическая интерпретация и визуализация результатов для поддержки принятия решений	-	https://edu.vsu .ru/course/vie w.php?id=317 90
1.8	Обеспечение безопасности, конфиденциальности и доверия в интеллектуальных системах IoT	-	https://edu.vsu .ru/course/vie w.php?id=317 90
1.9	Будущее интернета вещей: тренды, инновации и развитие интеллектуальных систем с применением передовых технологий	-	https://edu.vsu .ru/course/vie w.php?id=317 90
		бораторные занятия	
2.1	IoT с акцентом на облачные технологии и интеллектуальные системы	-	https://edu.vsu .ru/course/vie w.php?id=317 90
2.2	Устройства и интеллектуальные компоненты в IoT	-	
2.3	Протоколы связи и интеграция с облачными платформами для формирования интеллектуальных систем	Wi-Fi, Bluetooth, Zigbee, LoRaWAN и Cellular. Сравнение их характеристик по дальности, скорости передачи данных и энергопотреблению. Изучение протоколов передачи данных: MQTT, CoAP, HTTP/HTTPS на примере контроллеров ESP32	
2.4	Искусственный интеллект для развития интеллектуальных систем IoT	-	
2.5	управление данными в рамках интеллектуальных систем с использованием облачных решений	-	
2.6	Архитектура и проектирование интеллектуальных систем: компоненты, модули и алгоритмы взаимодействия	-	
2.7	Анализ данных, автоматическая интерпретация и	Анализ аномалий и событий в данных IoT Практические кейсы: визуализация данных с умных домов, промышленного IoT или транспорт	

	визуализация	Основные угрозы безопасности в экосистеме IoT:	
	результатов для	примеры атаки типа "отказ в обслуживании".	
	поддержки принятия	Методы защиты данных: шифрование,	
	решений	аутентификация устройств. Обсуждение	
		стандартов безопасности (например, ISO/IEC	
		27001)	
2.8	Обеспечение	-	
	безопасности,		
	конфиденциальности и		
	доверия в		
	интеллектуальных		
	системах IoT		
2.9	Будущее интернета	-	https://edu.vsu
	вещей: тренды,		.ru/course/vie
	инновации и развитие		w.php?id=317
	интеллектуальных систем		90
	с применением		
	передовых технологий		
		актические занятия	
3.2	Устройства и	Установка библиотек ESPIDF в Visual Studio	https://edu.vsu
	интеллектуальные	Code, настройка конфигурационного файла,	.ru/course/vie
	компоненты в ІоТ	прошивка контроллеров.	w.php?id=317
			90

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наиманараниа тами		Виды за	нятий (количество	часов)	
п/п	Наименование темы (раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
1.	IoT с акцентом на облачные технологии и интеллектуальные системы	1	-	-	4	11
2.	Устройства и интеллектуальные компоненты в IoT	1	1	-	6	21
3.	Протоколы связи и интеграция с облачными платформами для формирования интеллектуальных систем	-	-	1	4	21
4.	Искусственный интеллект для развития интеллектуальных систем IoT	-	-	-	10	10
5.	Управление данными в рамках интеллектуальных систем с использованием облачных решений	-	-	-	4	10
6.	Архитектура и проектирование интеллектуальных систем: компоненты, модули и алгоритмы взаимодействия	-	-	-	6	10
7.	Анализ данных, автоматическая интерпретация и	-	-	1	4	10

	визуализация результатов для поддержки принятия решений					
8.	Обеспечение безопасности, конфиденциальности и доверия в интеллектуальных системах IoT	-	-	-	4	10
9.	Будущее интернета вещей: тренды, инновации и развитие интеллектуальных систем с применением передовых технологий				6	
	Итого:	2	2	2	50	58

14. Методические указания для обучающихся по освоению дисциплины

При использовании дистанционных образовательных технологий и электронного обучения выполнять все указания преподавателей по работе на LMS-платформе, своевременно подключаться к online-занятиям, соблюдать рекомендации по организации самостоятельной работы. Курс предусматривает выполнение лабораторных работ, направленных на практическое освоение веб-разработки и облачных технологий

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

' '	жновная литература.				
	№ п/п	Источник			
	1.	Петров И. Программируемые контроллеры. Стандартные языки и приемы прикладного проектирования / — М.Солон-Пресс, 2020. — 423 с.:bk. — ISBN 5-98003-220-7.			
	2.	Баранов В. Интернет вещей: основы, технологии, решения /-М.: АртЕк 2019. — 344 с. — ISBN 978-617-7674-47-3			

б) дополнительная литература:

_	7	on Britain Time Party Par
	№ п/п	Источник
	3.	Технические средства автоматизации и управления /. — СПб.: Лань, 2019. — 456с. — ISBN 978-5-8114-2376-7.
	4.	Хоровиц П. Искусство схемотехники/ Хилл.У. 3 издание, — М.:издательство БИНОМ , 2025. — 704c. — ISBN 978-5-95180351-1.

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

№ п/п	Ресурс
5.	MDN Web Docs https://developer.mozilla.org/ru/
6.	Microsoft Learn: Облачные сервисы и DevOps https://learn.microsoft.com/ru-ru/training/

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
	Фитцпатрик, Б. Git для профессионального программиста / Б. Фитцпатрик, Б. Весков. — М.: Эксмо, 2021. — 400 с. — ISBN 978-5-04-121845-9.
2.	Лукьянов, А. Инфраструктура как код: управление конфигурациями в DevOps / А. Лукьянов. — СПб.: БХВ-Петербург, 2023. — 320 с. — ISBN 978-5-9775-4102-1.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

Дисциплина реализуется с применением электронного обучения и дистанционных образовательных технологий. Для организации занятий рекомендован онлайн-курс «Управление производственными процессами (https://edu.vsu.ru/user/index.php?id=27384)», размещенный на платформе Электронного университета ВГУ (LMS moodle), а также Интернет-ресурсы, приведенные в п.15в.

18. Материально-техническое обеспечение дисциплины: Лекционная аудитория, оборудованная мультимедийным проектором. Компьютерные классы факультета для проведения лабораторных занятий. Образовательный портал «Электронный университет ВГУ» https://edu.vsu.ru.

19. Оценочные средства для проведения текущей и промежуточной аттестаций.

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства	
1.	IoT с акцентом на облачные технологии и интеллектуальные системы	ПК-3, ПК-6	ПК-3.1, ПК-6.2	Перечень вопросов	
2.	Устройства и интеллектуальные компоненты в IoT	ПК-3, ПК-6	ПК-3.1, ПК-6.2	Практическое задание	
3.	Протоколы связи и интеграция с облачными платформами для формирования интеллектуальных систем	ПК-3, ПК-6	ПК-3.1, ПК-6.2	Тестовые задания	
4.	Искусственный интеллект для развития интеллектуальных систем IoT	ПК-3, ПК-6	ПК-3.1, ПК-6.2	Перечень вопросов	
5.	Управление данными в рамках интеллектуальных систем с использованием облачных решений	ПК-3, ПК-6	ПК-3.1, ПК-6.2	Тестовые задания	
6.	Архитектура и проектирование интеллектуальных систем: компоненты, модули и алгоритмы взаимодействия	ПК-3, ПК-6	ПК-3.1, ПК-6.2	Тестовые задания	
7.	Анализ данных, автоматическая интерпретация и визуализация результатов для поддержки принятия решений	ПК-3, ПК-6	ПК-3.1, ПК-6.2	Практическое задание	
8.	Обеспечение безопасности, конфиденциальности и доверия в интеллектуальных системах IoT	ПК-3, ПК-6	ПК-3.1, ПК-6.2	Перечень вопросов	
9.	Будущее интернета вещей: тренды, инновации и развитие интеллектуальных	ПК-3, ПК-6	ПК-3.1, ПК-6.2	Перечень вопросов	

№ п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства	
	систем с применением передовых технологий				
Промежуточная аттестация форма контроля – <i>зачет</i>				Перечень вопросов Практическое задание	

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

- Тестовые задания
- Контрольные вопросы

Примеры тестовых заданий:

Критерии оценки:

- оценка «отлично» выставляется, если правильные ответы даны более 85 % ответов
- оценка «хорошо» выставляется, если правильные ответы даны более 75 % ответов
- оценка «удовлетворительно» выставляется, если правильные ответы даны более 65 % ответов
- оценка «неудовлетворительно» если правильные ответы даны менее 50 % ответов.

Для оценивания результатов лабораторных работ используются следующие показатели:

- умение реализовывать требуемые алгоритмы,
- умение пояснить принципы функционирования программы
- обоснованность выбора технологий
- Продуманность общей архитектуры решения с учетом защиты данных

Соотношение показателей, критериев и шкалы оценивания результатов обучения.

Критерии оценивания компетенций	Уровень сформированности компетенций	Шкала оценок
Программа разработана, выполняет поставленную задачу		Отлично
Продемонстрировано умение реализовывать различные алгоритмы обработки	уровень	
При решении задач допущены несущественные ошибки, при этом продемонстрированы навыки работы с языком программирования	• •	Хорошо
Обучающийся демонстрирует частичные знания языка программирования, допускает существенные ошибки в решении задач	.,	Удовлетворительно
Обучающийся демонстрирует отрывочные, фрагментарные знания, допускает грубые ошибки, не умеет решать поставленные задачи		Неудовлетворительно

<u>Задания закрытого типа</u> (в каждом задании необходимо выбрать один или несколько ответов)

Что такое "Edge AI" в контексте IoT?

- а) Искусственный интеллект, реализованный только в облаке
- b) Обработка данных и принятие решений непосредственно на устройстве или близко к нему
- с) Использование только традиционных алгоритмов без машинного обучения
- d) Передача всех данных в центральный сервер для анализа

Правильный ответ: b

Задание 2:

Какое из перечисленных устройств чаще всего используется для внедрения TinyML?

- а) Мощные серверы
- b) Микроконтроллеры и микропроцессоры с низким энергопотреблением
- с) Операционные системы на ПК
- d) Глобальные спутники

Правильный ответ: b

Задание 3:

Что из перечисленного является основной задачей интеллектуальных систем в IoT?

- а) Только сбор данных без их обработки
- b) Обеспечение автоматического анализа и принятия решений на основе данных
- с) Передача данных без обработки в облако
- d) Увеличение объема передаваемых данных

Правильный ответ: b

Задание 4:

Какая технология чаще всего используется для реализации распознавания образов в IoT-устройствах?

- а) Традиционные реляционные базы данных
- b) Машинное обучение и нейронные сети
- с) Простые логические схемы без обучения
- d) Статические таблицы

Правильный ответ: b

Задание 5:

Что такое "предиктивное обслуживание" в контексте интеллектуальных систем IoT?

- а) Обслуживание устройств по расписанию без учета состояния оборудования
- b) Предсказание возможных поломок и планирование обслуживания заранее на основе анализа данных о состоянии устройств
- с) Обслуживание устройств только после их поломки
- d) Обеспечение постоянной работы устройств без обслуживания

Правильный ответ: b

Задание 6:

Какие компоненты обычно входят в состав интеллектуальной системы IoT?

- а) Сенсоры, исполнительные механизмы, облачные сервисы, алгоритмы ИИ
- b) Только сенсоры и кабели питания
- с) Только облачные серверы без устройств на месте установки
- d) Только пользовательские интерфейсы

Правильный ответ: а

Задание 7:

Что такое "обучение модели" в контексте интеллектуальных систем IoT?

- а) Процесс настройки аппаратных компонентов устройства для работы с данными
- b) Процесс создания модели ИИ на основе исторических данных для распознавания паттернов и принятия решений
- с) Процесс передачи данных из устройства в облако без анализа
- d) Процесс обновления программного обеспечения устройства

Правильный ответ: b

Задание 8:

Какая из технологий позволяет интегрировать машинное обучение непосредственно в устройства IoT с ограниченными ресурсами?

- a) TensorFlow Lite (TinyML)
- b) Hadoop
- c) SQL базы данных
- d) VPN-сервисы

Правильный ответ: а

Задание 9:

Что означает термин "самообучающаяся система" в контексте IoT?

а) Система, которая обучается самостоятельно на основе поступающих данных и улучшает свои алгоритмы

со временем

- b) Система, которая требует постоянного ручного обновления программного обеспечения
- с) Система, которая не использует машинное обучение и работает по статическим правилам
- d) Система, которая обучается только при подключении к интернету через Wi-Fi

Правильный ответ: а

Задание 10:

Какую роль играют нейронные сети в интеллектуальных системах IoT?

- а) Они обеспечивают физическую защиту устройств от внешних воздействий
- b) Они позволяют моделировать сложные паттерны и распознавать объекты или аномалии на основе данных с сенсоров
- с) Они заменяют все аппаратные компоненты системы
- d) Они используются только для хранения больших объемов данных без анализа Правильный ответ: b

Вопросы с коротким ответом:

1. Что такое интернет вещей (IoT)?

Ответ: Интернет вещей (IoT) — это сеть физических объектов, оснащенных сенсорами, программным обеспечением и другими технологиями для подключения и обмена данными с другими устройствами и системами через интернет.

2. Какова основная функция сенсоров в IoT?

Ответ: Сенсоры собирают данные из окружающей среды (например, температуру, влажность, движение) и передают их для анализа и обработки.

3. Какие протоколы передачи данных наиболее часто используются в IoT?

Ответ: Наиболее распространенные протоколы включают MQTT, CoAP и HTTP/HTTPS.

4. Что такое "умный дом"?

Ответ: Умный дом — это жилое пространство, в котором устройства и системы автоматизированы для управления освещением, отоплением, безопасностью и другими функциями через интернет.

5. Каковы основные преимущества использования IoT?

Ответ: Основные преимущества включают повышение эффективности, снижение затрат, улучшение качества обслуживания и возможность удаленного мониторинга.

6. Что такое "умные города"?

Ответ: Умные города используют технологии IoT для оптимизации управления ресурсами, улучшения качества жизни граждан и повышения устойчивости городской инфраструктуры.

7. Как обеспечивается безопасность данных в IoT?

Ответ: Безопасность данных в IoT обеспечивается с помощью шифрования, аутентификации устройств и регулярных обновлений программного обеспечения.

8. Какое значение имеет машинное обучение в контексте IoT?

Ответ: Машинное обучение позволяет анализировать большие объемы данных из IoT-устройств для выявления паттернов, предсказания событий и автоматизации принятия решений.

9. Что такое облачные платформы в контексте IoT?

Ответ: Облачные платформы предоставляют инфраструктуру для хранения, обработки и анализа данных из IoT-устройств, а также позволяют управлять этими устройствами удаленно.

10. Какие вызовы стоят перед внедрением технологий IoT?

Ответ: Основные вызовы включают проблемы безопасности, совместимости устройств, управления большими объемами данных и обеспечения конфиденциальности пользователей.

Задания с открытым ответом

- 1. Объясните, что такое "Edge AI" и как оно применяется в современных IoT-устройствах.
- 2. Какие основные преимущества и недостатки использования машинного обучения в интеллектуальных системах IoT?
- 3. Опишите процесс обучения модели машинного обучения для использования в IoT-устройстве. Какие этапы он включает?
- 4. Как интеллектуальные системы IoT могут способствовать автоматизации и повышению эффективности в промышленности или умных городах?

5. Какие основные вызовы связаны с внедрением интеллектуальных систем в устройствах интернета вещей и как их можно преодолеть?

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств: *тестовые задания*.

Описание критериев и шкалы оценивания результатов обучения при промежуточной аттестации.

Текущая аттестация проводится в соответствии с Положением о балльно-рейтинговой системе факультета компьютерных наук Воронежского государственного университета.

Текущая аттестация проводится в форме тестов по теоретической части курса, выполняемых в электронном виде в портале «Электронный университет ВГУ», и в форме решения практических задач, выполняемые в компьютерном классе (в лаборатории) факультета компьютерных наук. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования и Положением о балльнорейтинговой системе факультета компьютерных наук.

При оценивании используются количественные шкалы оценок.